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Influence of particle inertia and Basset force on tracer dynamics:
Analytic results in the small-inertia limit

A. N. Yannacopoulos,1 G. Rowlands,1 and G. P. King2
1Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom

2Mathematics Institute and Department of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
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The motion of small spherical particles in three-dimensional flows is studied analytically in the weak-inertia
limit. We obtain analytical results on the motion of heavy and light particles and the relative importance of the
inertia and the Basset force contribution throughout the vortex region for theABC flow and Hill’s vortex. We
find that in certain circumstances chaos is suppressed for light or heavy particles advected by the flow. We also
find that the Basset force has only a weak effect in the region of a vortex center and gradually becomes more
important near a separatrix; its principal effect is to change the magnitude of the drift of particles towards
either a vortex center or a separatrix.@S1063-651X~97!06202-8#

PACS number~s!: 47.15.2x, 05.45.1b, 47.52.1j, 83.50.Ws
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I. INTRODUCTION

The dynamical behavior of particles that are being carr
away by a fluid has recently received a great deal of at
tion. It has been made clear that even in very simple velo
fields the motion of a passive tracer can become very c
plicated and even chaotic@1#. However, in many problems o
interest, in a number of applications ranging from contam
nant dispersion in the atmosphere to chemical engineer
one is interested in the motion of particles of a differe
density from that of the fluid in given flow fields. In suc
cases the equations of motion of the particles are consi
ably different from the equations of motion of the fluid pa
cels, as inertial and buoyancy effects make the particles h
a different velocity from the ambient fluid velocity. As
consequence, the dynamical behavior of such particles
be considerably different from that of the fluid parcels~see,
e.g.,@2#!.

In this paper we study the motion of small spherical p
ticles in three-dimensional flows. Our aim is to give som
analytical results on the motion of such particles us
Melnikov-like functions.

II. MODEL

Following Druzhinin and Ostrovsky@3# ~see also@4#!, the
velocity of a small spherical particlev, with small inertia and
for small enough times, is given by

v5u~r ,t !1gS DuDt 2eE
2`

t D

Dt8

Du

Dt8

dt8

At2t8
D , ~2.1!

where the factorg, which is a measure of the inertial effect
is given by

g5
2a2

9n

r f2rp

r f
~2.2!

and
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e5S a2np D 1/2, ~2.3!

where n is the viscosity,r f is the fluid density,rp is the
density of the particles,a is the radius of the particle
D/Dt is the convective derivative, andu is the velocity of
the ambient fluid. The first term in the large parenthese
caused by inertial forces, while the second term is the
called Basset force and is a nonlocal in time term. The eq
tion of motion for the particle is given by

ṙ5v, ~2.4!

where the overdot denotes differentiation with respect
time. It is clearly seen from this relation that the particle
due to the effects of inertia, will deviate from the Lagrangi
trajectories. The derivation of this relation is given in det
in @3# and we do not reproduce it here. It is important to no
that the relation for the particle velocity is derived usin
perturbation methods and only the first two terms in the
ries solution are kept in Eq.~2.1!. Usually the first inertial
term is the more important. However, according to the n
merical results of Druzhinin and Ostrovsky, the second te
which is the Basset force term, may become important d
ing the processes of separatrix crossings. Also, accordin
these authors, heavier particles drift away from the vort
while lighter particles are attracted by the vortex. Furth
more, the Basset force is found to reduce the drift of b
heavy and light particles while regular motion~nonchaotic!
was observed. Our aim in this paper is to explain these
sults quantitatively using perturbation theory.

We shall begin by collecting a few general results on
motion of inertial particles in a subclass of three-dimensio
flows and then we shall concentrate, as examples, on
motion of inertial particles in anABC flow, which is a gen-
eralization of the one studied by Druzhinin and Ostrovs
@3#, and in the Hill vortex.
4148 © 1997 The American Physical Society
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55 4149INFLUENCE OF PARTICLE INERTIA AND BASSET . . .
III. GENERAL THEORY

Let us attempt to work out a general theory for the mot
of small spherical particles in a three-dimensional fluid flo
We will concentrate on flows that present a continuous sy
metry group such as a spherical or helical symmetry or
general a Euler flow that is known to have a symmetry gro
whose infinitesimal generator is the vorticity. For the moti
of passive tracers of the same density as the fluid (g50), an
ingenious construction was proposed by Mezic and Wigg
@5#, which reduced the equations of motion to a tw
dimensional Hamiltonian system and a third degree of fr
dom that was decoupled from the other two. We will sho
that for most of the cases considered by Mezic and Wigg
@5# the same is true for particles when inertial effects
introduced. For simplicity we neglect, for the time being, t
effect of the Basset force and concentrate on the ine
force.

In a vectorial representation we can rewrite the results
Mezic and Wiggins in the following form: The equation o
motion for the passive tracer in the original coordina
(x1 ,x2 ,x3) is

ṙ5u~x1 ,x2 ,x3!, ~3.1!

wherer5x1i1x2j1x3k. According to@5#, there is a coordi-
nate systemz5(z1 ,z2 ,z3) that takes the form

ż15
]H~z1 ,z2!

]z2
,

ż252
]H~z1 ,z2!

]z1
, ~3.2!

ż35k3~z1 ,z2!,

which means that in this new coordinate system the ve
ṙ is transformed as

ṙ5h1ż1e11h2ż2e21h3ż3e3 ~3.3!

and the velocity vector is transformed to

u5h1
]H~z1 ,z2!

]z2
e12h2

]H~z1 ,z2!

]z1
e21h3k3~z1 ,z2!e3 .

~3.4!

In the above relationsh1 ,h2 ,h3 are the structure functions o
the transformationx→z andei ,i51,2,3, are the unit vector
in the new coordinate system. We will assume that the n
coordinate system is orthogonal.

We now rewrite the inertial force in a coordinate-free n
tation as

F5g
Du

Dt
5gF¹S 12 u2D1v3uG . ~3.5!

Then under the assumption of orthogonality, the new eq
tions of motion for the particle including inertial effects a

ż15
]H~z1 ,z2!

]z2
1F1 ,
.
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ż252
]H~z1 ,z2!

]z1
1F2 , ~3.6!

ż35k3~z1 ,z2!1F3 ,

where the inertial forces take the form

F152k3H ,2

h1,3
h1

2
h3h3,1
h1
2 k3

22
h2h2,1
h1
2 H ,1

222H ,1H ,2

h1,2

h1

2H ,1H ,221H ,2H ,121H ,2
2 h1,1
h1

,

F252H ,2
2 h1h1,2

h2
2 1H ,1

2 h2,2
h2

1H ,1H ,12
2 2

h3h2,2
h2
2 k3

2

22H ,1H ,2

h2,1
h2

2H ,2H ,1
222k3H ,1

h2,3
h2

, ~3.7!

F352
h1h1,3
h3
2 H ,2

22
h2h2,3
h3
2 H ,1

21
h3,3
h3

k3
222H ,1k3

h3,2
h3

2H ,1k3,212H ,2k3
h3,1
h3

1H ,2k3,1,

where ,i denotes the derivative with respect to the coordin
zi and similar notation is used for the second derivatives

We observe that the behavior of this perturbed system
models the effects of particle inertia will depend on the n
ture of the structure functions. What Mezic and Wiggins@5#
show is that the Jacobian of the transformation will be ind
pendent of the coordinates and in fact will be equal to o
This imposes the constraint thath1h2h351. However, apart
from this there is little we can say in general. If the symm
try group that was used for the reduction of the origin
system to the form~3.6! corresponds to some geometric
symmetry that is imposed by the geometry of the probl
such as a cylindrical, spherical, or helical symmetry, then
is easy to see that these structure functions will not dep
on the third ‘‘neglected’’ coordinatez3. As a consequence
the system of equations~3.6! decouple~as in the case of
particles of the same density as the fluid! to a two-
dimensional system that depends only on (z1 ,z2) and a third
equation that again depends only on these variables an
can be integrated using quadrature. Furthermore, this t
dimensional system is a Hamiltonian system perturbed b
non-Hamiltonian~not necessarily dissipative! perturbation.
As a consequence, we see that in such cases the effe
particle inertia cannot introduce chaotic behavior, unless
flow is perturbed in such a way as to break the origin
symmetry. Also using well-known results about the behav
of such two-dimensional systems we can develop pertu
tive tools based on the Melnikov function to study bifurc
tions of limit cycles from centers of the unperturbed Ham
tonian system and separatrix cycles@6#. As a sample of these
techniques we give a criterion on the existence of a lim
cycle for the particle dynamics: If the unperturbed syst
has a one-parameter family of periodic orbits

Ga :x5sa~ t !, ~3.8!
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4150 55A. N. YANNACOPOULOS, G. ROWLANDS, AND G. P. KING
where the functionssa(t) have minimum periodsTa anda
belongs to an indexing setI that is either a finite or semifinite
open interval inR, then we can calculate the Melnikov func
tion along this cycle

M ~a,g!5E
0

Ta
¹̄H`Fdt, ~3.9!

where ¹̄H5(H ,2 ,2H ,1), F5g(F1 ,F2), and the wedge
product` is defined inR2 as x`y5x1y22y1x2. If there
exists ana0PI such thatM (a0 ,g)50 and this is a simple
zero, then for all sufficiently smallg there is a unique hy-
perbolic limit cycle in anO(g) neighborhood ofGa0

. If this

function is never zero, then there is no cycle in anO(g)
neighborhood of the unperturbed periodic orbit. The proo
this theorem can be found in@6#. Thus, for the particular
cases we consider, rigorous analytical techniques can be
ployed to give an understanding of the effects of inertia.

An interesting question arises about the behavior of in
tial particles in a Euler flow in this weak-inertia limit. From
the results of@5# it is known that for a Euler flow there is
always such a symmetry group whose infinitesimal gener
is the vorticity and so the motion of a passive tracer of
same density as the fluid can be reduced in the form~3.2!.
The situation is still unclear as to whether this result can
generalized for the dynamics of inertial particles in a Eu
flow. In general we cannot say whether these structure fu
tions will be independent ofz3 for a general Euler flow.
There are certain circumstances where this is true, as w
be the case of an Euler flow with a spherical, cylindrical,
helical symmetry; in general some other geometrical sym
try; or, for instance, a Euler flow not having the Beltram
property and whose vorticity vector would be in a plane a
would depend only on two of the variables. As all the Eu
flows known to us have such symmetries, we have not fo
a counterexample where the effect of particle inertia will ru
this property of decoupling of the equations of motion.
definitive answer on whether this is always true would
highly desirable. Note that in the case where the unpertur
flow is Euler, the equations of motion for an inertial partic
take the simple form

ż15H ,21g
P,1

h1
2 ,

ż252H ,11g
P,2

h2
2 , ~3.10!

ż35k31g
P,3

h3
2 ,

whereP is the pressure of the flow in the coordinate syst
z and depends only onz1 andz2.

Similar statements hold for the Basset force. Becaus
the complicated general form the equations of motion ta
we do not include them here. We just note that even with
inclusion of the Basset force the system will decouple t
two-dimensional system~which now is time dependent! and
a third equation that can be integrated using quadrature.
though, in principle, the two-dimensional time-depend
f
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system could exhibit chaos, we shall see below that in
examples studied in this paper the appropriate Melnik
function does not have zeros, thus precluding chaos. S
the two-dimensional unperturbed system is a Hamilton
system, the phase space consists of periodic trajectorie
asymptotic trajectories~separatrix cycles!. We then see tha
in the new coordinates the first-order approximation of
Basset force would be a time periodic force of the sa
period as the unperturbed trajectories and generally a pu
like infinite period force near the separatrices. Similar
Melnikov functions can be written down for the existence
periodic orbits of the time-dependent two-dimensional s
tem. The behavior of the particles near the separatrix
harder to study analytically since there are technical diffic
ties in the construction of a Poincare´ map for this infinite-
period perturbation. However, some progress can be m
using the impulselike behavior of the Basset force near
separatrix, and this approach is currently under consid
ation. These claims will be clarified in the next section fo
particular model.

Examples where the results of Sec. II can be used are
particles in a Taylor vortex flow, the Hill vortex flow~which
is a Euler flow for which the motion of the inertial particle
decouples!, or theABC flow whenC50. In the next section
we consider the motion of inertial particles in theABC flow
whenC[0 and also in the case whereC is small.

IV. PARTICLES IN THE ABC FLOW

We will consider the dynamics of small particles in th
ABC flow, which is defined by

u15Asinz1Ccosy,

u25Bsinx1Acosz, ~4.1!

u35Bcosx1Csiny.

In this particular case the system withC[0 already is in the
form of Eq. ~4.1!. The equations of motion for the passiv
tracer are

ẋ5Asinz1Ccosy,

ẏ5Bsinx1Acosz, ~4.2!

ż5Bcosx1Csiny.

In this particular case the system withC[0 already is in the
form of Eq. ~3.2!. The equations of motion for a small pa
ticle are

ẋ5u11g~ABcosxcosz2BCsinxsiny!1gBf1
,

ẏ5u21g~BCcosxcosy2ACsinysinz!1gBf2
, ~4.3!

ż5u31g~ACcosycosz2ABsinxsinz!1gBf3
,

whereBf i
, i51,2,3, are the Basset force corrections for th

particular flow. One can see that the caseg50 andC50 is
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55 4151INFLUENCE OF PARTICLE INERTIA AND BASSET . . .
an integrable case. We will assume thatg is of the same
order of magnitude asC and neglect second-order effects
the perturbation expansion.

We will first consider the effect of particle inertia and th
Basset force on the particles in they-independent cellular
flow (C50). WhenC50 andg50 the system is in Hamil-
tonian form forx andz and there is a constant of the motio
~the Hamiltonian! h5Bsinx1Acosz. The solution of the
problem can be written in terms of elliptic functions in th
form

ẋ5kl$cn@l~ t1t0!#1cn@l~ t2t0!#%,

ż5kl$cn@l~ t1t0!#2cn@l~ t2t0!#%, ~4.4!

where an overdot denotes differentiation with respect
time,

k25
~A1B!22h2

4AB
,

l25AB, ~4.5!

and t0 is the positive solution of the equation

sin2S 12 z0D5k2sn2~lt0uk2! ~4.6!

@we have chosen the time origin such thatx(0)5p/2 and
z(0)5z0#. Expanding the equations of motion in powers
g, we can write the Melnikov function~which essentially
gives us the change of the unperturbed Hamiltonian ove
unperturbed period! due to the effect of particle inertia a
M̄15gM1 with

M152^ẋz̈2 żẍ&, ~4.7!

where the angular brackets denote an averaging over the
perturbed period andx and z denote the unperturbed solu
tions. Using the Fourier expansions of the elliptic functio
in terms of the nome~see@7#! we obtain

ẋ5
4pl

K~k! (n50

`
qn11/2

11q2n11cosS ~2n11!plt0
2K D

3cosS ~2n11!plt

2K D ,
ż52

4pl

K~k! (n50

`
qn11/2

11q2n11sinS ~2n11!plt0
2K D

3sinS ~2n11!plt

2K D . ~4.8!

We can easily perform the integrations to obtain the Me
kov function

M15S 4pl

K D 2p (
n50

` S qn11/2

11q2n11D 2
o

f

n

n-

s

-

~2n11!sinS ~2n11!plt0
K D . ~4.9!

HereK5K(k) is the complete elliptic integral of first kind
We now obtain the contribution the Melnikov function du
to the Basset force. From Sec. II we see that the first-or
contribution to the Basset force is

Bf1
52E

2`

t d3x~ t8!

d3t8

1

At2t8
dt8, ~4.10!

Bf3
52E

2`

t d3z~ t8!

d3t9

1

At2t8
dt8 ~4.11!

wherex(t) andz(t) are the unperturbed solutions. Using th
Fourier-series expansion we can perform the integration t
by term and get the result

Bf1
5
4pl

K (
n50

`

GncosS ~2n11!plt0
2K D ~2n11!3/2l3/2

4K3/2

~4.12!

3FsinS ~2n11!plt

2K D1cosS ~2n11!plt

2K D G ,
Bf3

5
4pl

K (
n50

`

GnsinS ~2n11!plt0
2K D ~2n11!3/2l3/2

4K3/2

~4.13!

3FsinS ~2n11!plt

2K D2cosS ~2n11!plt

2K D G ,
where

Gn5
qn11/2

11q2n11 . ~4.14!

We note that the Basset force is a periodic force with
same period as the unperturbed motion and in some s
resonates with it. Close to the separatrix the period of
force ~like the period of the motion! becomes infinite. We
also see that since close to the separatrix the nome take
valueq51, the Fourier series for the Basset force reduce
terms of the form(n50(2n11)3/2cos@(2n11)s# and is for-
mally equivalent to some fractional derivative of ad func-
tion.

The Melnikov contribution due to the Basset force
M̄25geM2 where

M25^ẋ~ t !Bf3
~ t1t!2 ż~ t !Bf1

~ t1t!&. ~4.15!

Here the angular brackets denote integration overt over an
unperturbed period. Notice the introduction of a phase fac
t that comes from the fact that the Basset force is time
pendent. However, a more careful examination of the ex
form of the Basset force allows us to conclude that the o
relevant value of the phase factor is 0. This is easily seen
noting that to lowest order the Basset force is an integ
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over the unperturbed trajectory and the integration is p
formed over a memory kernel with time ranging from2` to
the present time. Thus, if the unperturbed orbit is taken w
some phase the force will have the same phase and there
be no phase dependence in the Melnikov function. Howe
this might not always be the case if the memory term
different, that is, if the time integration is between a fin
past timet0 to infinity. Thus we leave the phase dependen
in the Melnikov function for completeness. In the remaind
of this paper, when referring to the particular form of t
Basset force that ensures that the phase factor is zero, we
useM2(0). Using the Fourier series for the solutions w
obtain the result for the Melnikov function

M252
8p4l5/2

K5/2 (
n50

`

Gn
2~2n11!3/2sinS ~2n11!plt0

K D
3FcosS ~2n11!lpt

2K D2sinS ~2n11!plt

2K D G .
~4.16!

We can interpret the sum of the two Melnikov functio
as the change of value of the unperturbed Hamiltonian o
an unperturbed period. In fact, using a multiple-time-sc
perturbation technique on the equations of motion~see the
Appendix! we find that

ḣ5gM12egM2~0!, ~4.17!

where the overdot defines the ‘‘slow’’ time change of t
unperturbed Hamiltonian and the right-hand side of the eq
tion is a function ofh. This is in agreement with the rigorou
results on the meaning of the Melnikov function quoted
the end of Sec. II.

Neglecting the Basset force for a moment, we see that
Melnikov function is a number depending only on the unp
turbed trajectory and of course the value ofg. In Fig. 1 we
giveM1 as a function ofk

2. The values ofA andB chosen in

FIG. 1. Inertial contribution to the Melnikov functionM1 in the
ABC flow with A52 andB51 as a function ofk2. This Melnikov
function is seen to keep its sign for all values ofk2 and takes a
nonzero value at the separatrix (k51).
r-

h
ill
r,
s

e
r

ill

er
e

a-

t

e
-

this figure are 2 and 1, respectively. We notice thatM1 al-
ways keeps its sign, which is positive. This means that th
is no possibility for the generation of a limit cycle for th
inertial particle dynamics. Furthermore, interpreting t
Melnikov function as the change of the value of the unp
turbed Hamiltonian over an unperturbed period we can
something more about the behavior of particles in the flo
For a particle that is heavier than the fluid (g,0) its ‘‘ef-
fective’’ value of h tends to be reduced in time. Since th
center of the vortex corresponds to higher values ofh than
the outer part of it (h53 at the center of the vortex while
h51 at the separatrix!, we can say that a heavy particle wi
tend to be ejected from the center of the vortex to the se
ratrix region. A more quantitative approach to this proce
can be obtained by fittingM1 andM2(0) to a polynomial in
h and using Eq.~4.17! to solve for the evolution ofh in time.
Furthermore, we find that the value of the Melnikov functio
at the separatrix is nonvanishing and of positive sign, so
the separatrix structure must break under the effects of
ticle inertia. The opposite results follow for light particle
(g.0), which tend to concentrate in the center of the vort
We notice that the value ofM1 on the separatrix for thes
values ofA andB is nonzero. The value ofM1 on the sepa-
ratrix is calculated using the closed form of the separa
solution. Thus a particle can leave the cell under the ac
of the inertia force only. Here, there is no contradiction w
the results of Druzhinin and Ostrovsky. In their paper th
observed that a particle will not leave the cell under t
action of the inertia force only. However, the flow they us
was a specially symmetric case of theABC flow (A5B) for
which the integrand of the Melnikov function identicall
vanishes on the separatrix. This is not generally the case
for example, in the case considered here. In general, fo
ABC flow

ẋz̈2 żẍ;Asin~x!1Bcos~x!2sin~x!cos~z!h. ~4.18!

In the special case whereA5B this is proportional to the
value of the Hamiltonian and since forA5B the value of the
Hamiltonian on the separatrix solution ish50, the integrand
of the Melnikov function will vanish. However, in genera
cases this integrand will not vanish along the separatrix or
A more detailed analysis will be needed to reveal the glo
phase plane dynamics.

Including the effect of the Basset force, we see that
Melnikov function due to the Basset force depends on
phase and can take positive and negative values depen
on the value of this phase. In the same spirit as before
interpret this result as that the effect of the Basset force
be ‘‘on average’’ to change the drift of particles towar
either the center of the vortex or the separatrix. Looking
the minimum value of the total Melnikov function
M11eM2 over all the possible phases, we see that this m
mum is clearly above zero for all values ofk2 for a range of
values ofe. This rules out the existence of periodic orbits f
the inertial particles under the influence of the Basset fo
for small enoughg ~Fig. 2!. Thus the Basset force will no
change the dynamics apart from changing the magnitud
the drift of particles towards the center of the vortex or t
separatrix. Note that the only case where the minimum of
total Melnikov function will be negative is whene is as large
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55 4153INFLUENCE OF PARTICLE INERTIA AND BASSET . . .
as 0.5. This corresponds to large values ofg and for such
values the basic equation~2.1! may not be applicable.~From
the definition ofe and g we see that their values are n
independent.! In Fig. 3 we show the total Melnikov function
M11eM2(0), which, as pointed out before, would corr
spond to the change of unperturbed Hamiltonian over a
riod for the special form of the Basset force.

Furthermore, we can study the relative importance of
inertia to the Basset force as we move throughout the fl
using these Melnikov functions. In Fig. 4~a! we plot Mav,
the square average over the phase ofM2:

Mav5
1

2pE0
2p

M2~t!2dt,

and in Fig. 4~b! the ratioMav/M1. It is seen that the relative
importance of the Basset force is very small for small valu
of k2 ~the center of the vortex! and gradually becomes mor
important as we move towards the separatrix. The curve
a local minimum somewhere near the separatrix~whose
value is still much larger than the value atk50) and shoots
up neark51. We believe thatMav ~the square average o
M2 over the phase! gives us an indication of the transport
phase space area and thus believe that it is a reasonable
sure of the effect of the Basset force. For the sake of co
parison in Fig. 5 we plot the ratio of the maximum over t
phase ofM2 toM1 and the ratio of the value ofM2 when the
phase is 0 toM1 as functions ofk

2. The first quantity slowly
decreases from the center of the vortex to the separatrix
has an abrupt peak atk51, while the second shows the sam
behavior as the square average over the phase.

Returning to the comments we made earlier we cons
M2(0)/M1 as the proper measure of the importance of
Basset force compared with the inertial force. This meas

FIG. 2. Minimum over the phase of the total Melnikov functio
(M tot5M11eM2: inertial and Basset force contribution! as a func-
tion of k2 for the ABC flow for different values of the paramete
e (e50.01,0.05,0.1,0.2,0.3,0.4,0.5).e quantifies the relative impor
tance of the Basset force with respect to inertial forces. The m
mum of the total Melnikov function is seen to be bounded aw
from zero for all values ofk2 for a large range of values ofe.
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e
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s
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clearly shows the significance of the Basset force as
move close to the separatrix region.

Summarizing, we see that using the Melnikov functio
M1 andM2, we can reproduce the numerical results of@3#
for a very similar cellular flow, namely, that heavy particl
go towards the separatrix and light particles go towards
center of the vortex, and that the Basset force can influe
this drift and becomes most important in the separatrix
gion. Thus it has to be taken into account for a correct m
eling of the particle motion. An interesting point is that
general, even without the Basset force, a heavy particle
be ejected from the vortex and cross the unperturbed sep
trix. Numerical integration of the system that we have p
formed seems to support this view. Therefore, it seems
the conclusion of@3# that separatrix crossing can only occ
as a result of the Basset force is limited to particular cellu
flows such as the one they studied.

We now consider the effect of the breakup of the symm
try with respect to translations iny by introducing a small
value ofC. We can divide the equations of motion forx and
z by the equation of motion fory and consider the variable
y as the new ‘‘time.’’ In the limit whereg is of the same
order of magnitude asC we obtain

dx

dy
5
Asin~z!

h
1
Ccos~y!

h
1g

ABcos~x!cos~z!

h
1B1 ,

dz

dy
5
Bcos~x!

h
1
Csin~y!

h
2g

ABsin~x!sin~z!

h
1B3 ,

~4.19!

whereB1 andB3 are thex andz components of the Basse
force parametrized iny instead of time. It is easy to see th
the Melnikov contributions due to the inertia and the Bas
force will be of the same form as given earlier, but no
instead oft we have to introducey/h. There is also a Melni-
kov contribution due to the perturbation caused by hav
CÞ0. This isM̄35CM3, where

i-
y

FIG. 3. Value of the total Melnikov function at phase
M tot(0)5M11eM2(0), as afunction of k2 for different values of
e ~as in Fig. 2!.
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M35^ẋsin~t1y!2 żcos~t1y!&. ~4.20!

Here the angular brackets denote averaging over a pe
~remember that now the equations have as independent
abley instead oft, and this introduces a minor modificatio
in the period of the motion!. Notice also that now a part o
the perturbation depends in a periodic manner on the in
pendent variable and this makes it necessary to introduce
phase factort. The Melnikov functionM3 can be obtained in
closed form as was done in@8# and may be written as

M352uhupsechS 2K8h

l D sinS 2u0hl D sin~t!, ~4.21!

where

dn2~u0!5
A2B1h

2A
~4.22!

or as a Fourier series

FIG. 4. ~a! Mav as a function ofk
2 @the square average over th

phase ofM2: Mav5(1/2p)*0
2pM2

2(t)dt] and ~b! Mav/M1 as a
function of k2.
od
ri-

e-
he

M3~t!532pl (
n50

` FGn

2hKcos~a!2~pl12pln!sin~a!

4h2K22~2pln1pl!2 G
3sinS 2hKl D sin~t!,

a5
~2n11!plt0

2K
. ~4.23!

We can now define the total Melnikov function a
Mt5CM31gM11egM2. By studying its zeros as a func
tion of the phaset, we can study the generation of period
orbits under the influence of particle inertia, the effect
introducing they dependence of the velocity field, and th
effect of the Basset force. It is easily seen that for cert
values ofg this function might be bounded away from zer
thus precluding the existence of periodic orbits of the sa
period as the unperturbed one. Such an effect is illustrate
Fig. 6 for valuesA52 andB51. In this figure we plot the

FIG. 5. ~a! Ratio of the maximum of the Basset force contrib
tion to the Melnikov function maxtP[0,2p]@M2(t)# to the inertial
contributionM1 and ~b! ratio of the Basset force contribution ca
culated at zero phaseM2(0) to the inertial contributionM1 as func-
tions of k2.
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locus of the values of the Melnikov functionCM31gM1 as
a function of k2. The parameterC is kept at the constan
valueC50.1 andg takes the valueg50.05 in Fig. 6~a! and
g50.1 in Fig. 6~b!, respectively. It is easily seen that ifg is
small enough, there will be values of the phaset for which
the Melnikov function will be equal to 0. This will mean th
existence of periodic orbits of the same period as the un
turbed one in regions of phase space with the appropr
values ofk. However, ifg gets larger, we see that the Meln
kov function can never be zero so that no periodic orbits
the same period as the unperturbed ones will survive un
the action of the perturbation due to particle inertia.

Finally, it is interesting to consider these Melnikov fun
tions on the separatrix orbit. The Fourier-series expansio
not satisfactory close to the separatrix and so we chos
perform the integrations using the separatrix solution. T
Melnikov functions for general values ofA andB are

FIG. 6. Locus of the values of the total Melnikov function du
to the inertial force and the perturbation iny, CM31gM1 as a
function ofk2 for a fixed value ofC50.1 and two different values
for g, ~a! g50.05 and~b! g50.1. It is seen that for large enoug
values ofg the total Melnikov function can be bounded away fro
zero. The locus of the values is given by the region bounded
gM11CmintP[0,2p]@M3(t)# andgM11CmaxtP[0,2p]@M3(t)#.
r-
te

f
er

is
to
e

M1516l2S 2r 212r 2lt012lt011

~r 221!2 D r , ~4.24!

wherer5exp(2lt0) and t0 is given by

t05
1

l
arccosh@~A/B!1/2# ~4.25!

andM3 by

M35
2p

A2B
sechS p

2s D „sin~n!2cos~n!…sin~t!, ~4.26!

where

n5
12m2

m
lnS ~11m!

~12m2!1/2D , m25
B

A
, s5

~AB!1/2

A2B
.

~4.27!

For the caseA52 andB51 we find, neglecting the Basse
contribution,

Mt50.852Csin~t!1g4.919 62. ~4.28!

We see that this function will never have a zero for any va
of t if ugu.0.173uCu. Since simple zeros of the total Meln
kov function calculated on the unperturbed separatrix o
imply the existence of chaotic dynamics in the separa
region, this result can be interpreted as suppression of ch
due to particle inertia for relatively small values of the p
rameterg. However, one must be cautious about this int
pretation because the insertion of inertial terms makes
particle dynamics dissipative. The possible suppression
chaos due to particle inertia is in accordance with numer
results of McLaughlin@9#. One should note the relevance
this result in mixing problems: The suppression of chaos
the separatrix region because of the effect of finite size of
advected particles will result in a less efficient mixing
heavy tracers or bubbles than for a passive tracer with
same density as the fluid.

In the above results we have not included the effect of
Basset force. It can easily be seen that the inclusion of
Basset force will not change these qualitative results sign
cantly but will only alter the values ofg for which the sup-
pression of chaos and the destruction of the periodic or
occurs. It should be noted that one can study the genera
of subharmonic orbits in a similar manner by taking an a
propriate generalization of the Melnikov functions@10#.

V. A SECOND EXAMPLE: SPHERICAL PARTICLES
IN THE HILLS VORTEX

As a second example, which produces results simila
the ABC flow, we consider the motion of small spheric
particles in the Hill vortex. This is a three-dimensional flo
which in cylindrical coordinates takes the form

ur5rz, uu5
c

r 2
, uz5122r 22z2 ~5.1!

and is a solution of the Euler equation everywhere apart fr
thez axis. This flow is clearly singular since it has a singu

y
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vorticity distribution and theuu velocity component can be
come infinite forr→0. The equations of motion for sma
spherical particles including only the inertial force is

ṙ5rz2g
2r 412r 614c2

r 3
, u̇5

2c

r 2
,

ż5122r 22z21g~22z12z3!. ~5.2!

We clearly see that the equations forr andz can be separate
from the equation for the evolution ofu. We also see tha
unlessc50 the equation forr is singular for smallr ~near
the z axis!. We believe that in this case the above mode
not a particularly good approximation for the dynamics
heavy particles since the expression of the inertial for
given here is based on a perturbation argument that
break down if the velocity field becomes singular. Howev
in order to show that the techniques and results given for
ABC flow extend to other cases we give here the Melnik
function for this case bearing in mind that it is strictly val
only if c50 or if the orbits stay sufficiently far from the
region r50 .

It is useful to define the new variableR5r 2/2 . The un-
perturbed system is Hamiltonian in the (R,z) variables and
the Hamiltonian isH5Rz22R12R2. The Melnikov func-
tion for the effect of the particle inertia on the motion is

M1522gE
2T/2

T/2 S 2R212c223H112RH1
c2H

R2

2
2H2

R Ddt, ~5.3!

whereT is the unperturbed period of the motion in the H
vortex. We can rewrite this as an integral overR, namely,

M522gE
Rmin

RmaxS 2R212c223H112RH1
c2H

R2 2
2H2

R D

FIG. 7. Inertial force contribution to the Melnikov function fo
the Hill vortex as a function ofk2 for c50. This Melnikov function
is seen to keep its sign for all values ofk ~that is, throughout the
vortex!.
s
f
s
ill
,
e
v

3@R~Rmax2R!~R2Rmin!#
21/2dR, ~5.4!

whereRmax511(118H)1/2 andRmin512(118H)1/2 . For
more details on the unperturbed motion see@5#. This integral
can be expressed analytically in closed form to give

M1522g@A~H !K~k!1B~H !E~k!#, ~5.5!

whereK andE are the complete elliptic integrals of first an
second kind and

A~H !52
4k82Rmax

3/2

3
2

6H

Rmax
1/2 1

4c2

Rmax
1/2 2

2Hc2

3Rmax
5/2 k82

,

B~H !5
8Rmax

3/2 ~11k82!

3
124HRmax

1/2 2
4H2

Rmax
3/2

1
4Hc2

3Rmax
5/2

~22k2!

k84
, ~5.6!

wherek2512Rmin /Rmax andk82512k2. For c50 we plot
the Melnikov function as a function ofk2 in Fig. 7. We see
that this Melnikov function keeps the same sign for all va
ues ofH so that particles lighter than the fluid will tend t
concentrate in the core of the vortex and heavy particles w
be ejected towards the separatrix region. This is similar
the behavior for theABC flow. ForcÞ0 the Melnikov func-
tion can change sign as shown in Fig. 8 forc50.1. We can
associate this change of sign with the existence of a li
cycle as long as the zero of the Melnikov function is not
the vicinity of the separatrix, where the basic model is
longer valid. ~We expect the basic model used here to

FIG. 8. Inertial force contribution to the Melnikov function fo
the Hill vortex as a function ofk2 for c50.1. The Melnikov func-
tion keeps its sign for values ofk far from the separatrix region
k51. A zero of the Melnikov function close to the separatrix
associated not with the existence of a limit cycle but with the s
gularity of the velocity field in this region which makes the validit
of the perturbation theory used to derive the equations of mot
questionable~see the text for details!.
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valid in the whole phase plane excluding a neighborhood
the separatrix, the width of which clearly depends on
value ofc.!

VI. CONCLUSION

In this paper we give some analytical results on the m
tion of small spherical particles in two distinct incompres
ible three-dimensional velocity fields in the weak-iner
limit. We give a general justification that for a number
flows the problem can be reduced to the study of a tw
dimensional Hamiltonian system with a non-Hamiltoni
perturbation and a third degree of freedom whose evolu
can be reduced to quadrature. As a result of this some
turbative analytical methods can be used to state res
about the bifurcation of limit cycles from the center or t
behavior of heteroclinic cycles. As an explicit example w
take the motion of inertial particles in theABC flow, where
using these techniques we can prove the nonexistenc
limit cycles for small enough values of the parameterg as
well as obtain analytical results on the motion of heavy a
light particles in this flow and the relative importance of t
inertia and the Basset force contribution throughout the v
tex region. An interesting result is the possible suppress
of chaos in certain circumstances for bubbles or heavy
ticles advected by the flow. Since chaos is usually relate
effective mixing of a passive tracer advected by a flow fie
this result may be interpreted largely as an inhibition of
fective mixing of heavy particles or bubbles for certain p
rameter values. Such results can be of great interest in a
cations such as environmental sciences or in experime
fluid mechanics where usually tracers have a density dif
ent from that of the fluid.

As a second example we consider the motion of partic
in the Hill vortex. Similar results can be obtained, name
that the qualitative behavior of the motion of the tracer c
be given by the study of some properly defined Melnik
integral and that for suitable parameter values no limit cyc
for the motion of the tracer are observed. As before, bubb
s.
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tend to move to the center of the vortex, whereas he
particles tend to move away from it.
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APPENDIX

In this appendix we very briefly give the multiple-time
scale technique that leads to the result that the Melni
function is associated with the change of the unpertur
Hamiltonian over a period. We restrict our derivation to t
ABC flow, but all the results are applicable to more gene
flows. Neglecting the Basset force and takingC50, we ob-
tain from the definition ofh as given in Sec. IV and the
equations of motion given by Eq.~4.3!

ḣ5gAB@cos2~x!cos~z!1sin~x!sin2~z!#. ~A1!

We now expand the orbits and writex5x01gx1 and
z5z01gz1, substitute into the differential equation, and e
pand as a power series ing. Then, to lowest order

ḣ5gAB@cos2~x0!cos~z0!1sin~x0!sin
2~z0!#, ~A2!

which can be integrated in time to give the change of
Hamiltonian over an unperturbed period. The integral o
the right-hand side of Eq.~A2! then reduces to the Melnikov
function. Then introducing a slow time scalet15gt we may
write

dh

dt1
5M1 , ~A3!

which reflects the fact thath changes only on the slow tim
scale. Simlarly, we obtain that the Basset force will contr
ute to this change a factor ofgeM2(0).
.
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