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Influence of particle inertia and Basset force on tracer dynamics:
Analytic results in the small-inertia limit
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The motion of small spherical particles in three-dimensional flows is studied analytically in the weak-inertia
limit. We obtain analytical results on the motion of heavy and light particles and the relative importance of the
inertia and the Basset force contribution throughout the vortex region fok B flow and Hill's vortex. We
find that in certain circumstances chaos is suppressed for light or heavy particles advected by the flow. We also
find that the Basset force has only a weak effect in the region of a vortex center and gradually becomes more
important near a separatrix; its principal effect is to change the magnitude of the drift of particles towards
either a vortex center or a separatfi$1063-651X97)06202-4
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I. INTRODUCTION

The dynamical behavior of particles that are being carried
away by a fluid has recently received a great deal of atten-
tion. It has been made clear that even in very simple velocity(Nhere v is the viscosity.p; is the fluid density,p, is the
fields the motion of a passive tracer can become very Comdensity of the particles,gf is the radius of th,gp particle
plicated and even chaofit]. However, in many problems of D/Dt is the convective derivative, and is the velocity of '
interest, in a number of applications ranging from contami- he ambient fluid. The first term ir,1 the large parentrz/eses is

nant dispersion in the atmosphere to chemical engineerin mused by inertial forces. while the second term is the So-
one is interested in the motion of particles of a different y '

density from that of the fluid in given flow fields. In such called Basset force and is a nonlocal in time term. The equa-

cases the equations of motion of the particles are considep-On of motion for the particle is given by

ably different from the equations of motion of the fluid par-

cels, as inertial and buoyancy effects make the particles have _

a different velocity from the ambient fluid velocity. As a r=v, 2.9

consequence, the dynamical behavior of such particles can

be considerably different from that of the fluid parc&se,

e.g.,[2]). where the overdot denotes differentiation with respect to

In this paper we study the motion of small spherical par-time. It is clearly seen from this relation that the particles,

ticles in three-dimensional flows. Our aim is to give somedue to the effects of inertia, will deviate from the Lagrangian

analytical results on the motion of such particles usingtrajectories. The derivation of this relation is given in detail

Melnikov-like functions. in [3] and we do not reproduce it here. It is important to note
that the relation for the particle velocity is derived using
perturbation methods and only the first two terms in the se-

II. MODEL ries solution are kept in Eq2.1). Usually the first inertial

Following Druzhinin and Ostrovskjg] (see alsd4]), the ~ term is the more import.a_nt. However, according to the nu-
velocity of a small spherical particte, with small inertia and ~ Merical results of Druzhinin and Ostrovsky, the second term,
for small enough times, is given by which is the Basset force term, may become important dur-

ing the processes of separatrix crossings. Also, according to
, these authors, heavier particles drift away from the vortex,
E_eﬁ 3 & dt (2.) while lighter particles are attracted by the vortex. Further-
Dt —Dt" D" \t—t" )’ ' more, the Basset force is found to reduce the drift of both
heavy and light particles while regular motiénonchaoti¢
where the factory, which is a measure of the inertial effects, Was observed. Our aim in this paper is to explain these re-
is given by sults quanutauvgly using perturbauon theory.
We shall begin by collecting a few general results on the
motion of inertial particles in a subclass of three-dimensional

v=u(r,t)+vy

2
zzim (2.20  flows and then we shall concentrate, as examples, on the
9v  p¢ motion of inertial particles in a\BC flow, which is a gen-
eralization of the one studied by Druzhinin and Ostrovsky
and [3], and in the Hill vortex.
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Ill. GENERAL THEORY . dH(z1,2,)

22— Fz, (36)

Let us attempt to work out a general theory for the motion dzy
of small spherical particles in a three-dimensional fluid flow.

We will concentrate on flows that present a continuous sym- '23= K3(z1,25) +F3,

metry group such as a spherical or helical symmetry or in

general a Euler flow that is known to have a symmetry groupwhere the inertial forces take the form

whose infinitesimal generator is the vorticity. For the motion

of passive tracers of the same density as the flyid @), an hiz hshs; , hohys h,,2
ingenious construction was proposed by Mezic and Wiggins Fi= 2k3H,2h_1 IYAR-I _hrHvl_ZHilH ’Zh_l
[5], which reduced the equations of motion to a two- ! !

dimensional Hamiltonian system and a third degree of free- o1
dom that was decoupled from the other two. We will show ~HaH 2t H M ot Hop
that for most of the cases considered by Mezic and Wiggins
[5] the same is true for particles when inertial effects are h-h h h-h
; . - . : o N1N12 o N22 2 322 5
introduced. For simplicity we neglect, for the time being, the Fo=—H5% 2 + H~1h_+ HH%— ?ka
effect of the Basset force and concentrate on the inertial 2 2 2
force.
In a vectorial representation we can rewrite the results of —2H 4H ]zhi’l— H,H ,21—2k3H,1hi’3, (3.7
2 2

Mezic and Wiggins in the following form: The equation of
motion for the passive tracer in the original coordinates
(X1,Xp,X3) is _hihyg 5 hohas
3 h2 2 hZ
3 3

h h
HZ+ —22k2—2H kg2
. ! h3 ! h3
r=u(xy,Xz,X3), (3.

wherer = x;i+X,j +X3k. According to[5], there is a coordi-

h31
- H'1k3’2+ 2H’2k3_h + H'2k3'1,
3
nate systenz=(z;,z,,z;) that takes the form

'lemy z; and similar notation is used for the second derivatives.
9z, We observe that the behavior of this perturbed system that
models the effects of particle inertia will depend on the na-
b dH(zy,2,) (3.2 ture of the structure functions. What Mezic and WigdiBb$
2 dzy "’ ' show is that the Jacobian of the transformation will be inde-
pendent of the coordinates and in fact will be equal to one.
23=Ka(21,2,), This imposes the constraint thiath,h;=1. However, apart

from this there is little we can say in general. If the symme-
which means that in this new coordinate system the vectoiry group that was used for the reduction of the original

r is transformed as system to the form3.6) corresponds to some geometrical
symmetry that is imposed by the geometry of the problem
r=h,z,8,+h,z,6,+ hazee, (3.3  such as a cylindrical, spherical, or helical symmetry, then it
is easy to see that these structure functions will not depend
and the velocity vector is transformed to on the third “neglected” coordinate;. As a consequence,
the system of equation€3.6) decouple(as in the case of
u=h dH(z1,25) o—h dH(z1,23) ot hak particles of the same density as the fluitb a two-
Tl oz, 12 4z, 2 Nska(21,27)8s. dimensional system that depends only ap,¢,) and a third

where | denotes the derivative with respect to the coordinate

(3.9 equation that again depends only on these variables and so
) . can be integrated using quadrature. Furthermore, this two-
In the above relations, ,h,, h; are the structure functions of dimensional system is a Hamiltonian system perturbed by a

the transformatiox—z ande ,i=1,2,3, are the unit vectors non-Hamiltonian(not necessarily dissipatiyeperturbation.

in the new coordinate system. We will assume that the newAs a consequence, we see that in such cases the effect of
coordinate system is orthogonal. particle inertia cannot introduce chaotic behavior, unless the

We now rewrite the inertial force in a coordinate-free no-fiow is perturbed in such a way as to break the original
tation as symmetry. Also using well-known results about the behavior

F= 7%: 7[V(Eu2) +wxul. (3.5 t?ve tools_ b_ased on the Melnikov function to study bifurcz_i-

Dt 2 tions of limit cycles from centers of the unperturbed Hamil-
. . tonian system and separatrix cyc|€$. As a sample of these
Then under'the assumpnon of.orthogongllty,' the new €QUaechniques we give a criterion on the existence of a limit
tions of motion for the particle including inertial effects are cycle for the particle dynamics: If the unperturbed system

. OH(21,20) has a one-parameter family of periodic orbits

Z;

9z, L T, x=a,(t), (3.9

of such two-dimensional systems we can develop perturba-
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where the functiongr,(t) have minimum period3, anda  system could exhibit chaos, we shall see below that in the
belongs to an indexing sethat is either a finite or semifinite examples studied in this paper the appropriate Melnikov
open interval inR, then we can calculate the Melnikov func- function does not have zeros, thus precluding chaos. Since
tion along this cycle the two-dimensional unperturbed system is a Hamiltonian
system, the phase space consists of periodic trajectories or
asymptotic trajectoriegseparatrix cycles We then see that

in the new coordinates the first-order approximation of the
Basset force would be a time periodic force of the same
where ﬁ":(H,zy— H.), F=y(F;,F,), and the wedge periqd as the unperturbed trajectories and ggnerally a pulse-
product/\ is defined inR? as x/\y=x;y,—Y;X,. If there like |_nf|n|te pe_nod force near the separatrices. _Slmllarly,
exists anage | such thatM(ay,y)=0 and this is a simple Melnikov functions can be written down for the existence of
zero, then for all sufficiently smaly there is a unique hy- Periodic orbits of the time-dependent two-dimensional sys-

perbolic limit cycle in anO(y) neighborhood of , . If this ~ tém. The behavior of the particles near the separatrix is
o . 0 harder to study analytically since there are technical difficul-
function is never zero, then there is no cycle in @fry)

neighborhood of the unperturbed periodic orbit. The proof oftles. '3 the COSSI_I’UCIIOH of a Poincaneap for this mﬂglte- d
this theorem can be found if6]. Thus, for the particular period perturbation. However, some progress can be made

: . X ' using the impulselike behavior of the Basset force near the
cases we consider, rigorous analytical techniques can be em-=

) ) N Separatrix, and this approach is currently under consider-
ployed to give an understanding of the effects of inertia. : . . e )
. . : . . - ation. These claims will be clarified in the next section for a
An interesting question arises about the behavior of iner- .
. . . L L particular model.
tial particles in a Euler flow in this weak-inertia limit. From Examples where the results of Sec. Il can be used are for
the results of(5] it is known that for a Euler flow there is P X

P articles in a Taylor vortex flow, the Hill vortex flowvhich
always such a symmetry group whose infinitesimal generatar ) ) T s
. - . : Is a Euler flow for which the motion of the inertial particles
is the vorticity and so the motion of a passive tracer of the

same density as the fluid can be reduced in the f(819). decouplep or theABC flow whenC=0. In the next section

The situation is still unclear as to whether this result can b&'c consider the motion of inertial particles in théC flow

generalized for the dynamics of inertial particles in a EuIerWhenCEo and also in the case whegeis small.

flow. In general we cannot say whether these structure func-

tions will be independent of; for a general Euler flow. IV. PARTICLES IN THE ABC FLOW

There are certain circumstances where this is true, as would We will consider the dynamics of small particles in the
be the case of an Euler flow with a spherical, cylindrical, ory g = fiow. which is defined by

helical symmetry; in general some other geometrical symme- '

M(a,y)= JOTaﬁ/\th, (3.9

try; or, for instance, a Euler flow not having the Beltrami u,=Asinz+ Ccosy,

property and whose vorticity vector would be in a plane and

would depend only on two of the variables. As all the Euler u,= Bsinx+Acos, (4.2
flows known to us have such symmetries, we have not found

a counterexample where the effect of particle inertia will ruin us=Bcosc+ Csiny.

this property of decoupling of the equations of motion. A
definitive answer on whether this is always true would beln this particular case the system wii=0 already is in the
highly desirable. Note that in the case where the unperturbefbrm of Eq. (4.1). The equations of motion for the passive
flow is Euler, the equations of motion for an inertial particle tracer are
take the simple form

x=Asinz+ Ccoy,

: 1
Z]_: H,2+ ’)/F,
1

y=Bsinx+ Acog, 4.2)
Zy=—H 1+ yh_’zz’ (3.10 z=Bcos+ Csiny.
2
In this particular case the system with=0 already is in the
. P form of Eq.(3.2). The equations of motion for a small par-
z3=Ks+ty 17, ticle are
3
whereP is the pressure of the flow in the coordinate system x=u; +y(ABcosxccog—BCsinxsiny) + yBy,,
z and depends only op, andz,.
Similar statements hold for the Basset force. Because of y=u2+ y(BCcosxcog/— ACsinysinz) + ),sz, 4.3

the complicated general form the equations of motion take,
we do not include them here. We just note that even with the
inclusion of the Basset force the system will decouple to a
two-dimensional systertwhich now is time dependenand ) ] )
a third equation that can be integrated using quadrature. AlvhereBy,, i=1,2,3, are the Basset force corrections for this
though, in principle, the two-dimensional time-dependentparticular flow. One can see that the cgse0 andC=0 is

z=u3z+ y(ACcoycoz— ABsirxsinz) + yBy,



55 INFLUENCE OF PARTICLE INERTIA AND BASSET ... 4151
an integrable case. We will assume thatis of the same
order of magnitude a€ and neglect second-order effects in (2n+1)sin
the perturbation expansion.

We will first consider the effect of particle inertia and the ygre k = K(k) is the complete elliptic integral of first kind.
Basset force on the particles in thyeindependent cellular \ye now obtain the contribution the Melnikov function due

flow (C=0). WhenC=0 andy=0 the system is in Hamil- {5 the Basset force. From Sec. Il we see that the first-order
tonian form forx andz and there is a constant of the motion ~qntribution to the Basset force is

(the Hamiltoniam h=Bsinx+Acosz. The solution of the

K 4.9

problem can be written in terms of elliptic functions in the CdBx(t) 1

form Bflz - 7ocW ﬁdt/, (410)
x=kn{er\ (t+to)]+enN (t—to) I},
: B.=— t d—sz(tr,)idt' (4.11)
z=Kk e\ (t+tg)]—cA(t—tg)]}, (4.9 3 — Ot" it

where an overdot denotes differentiation with respect tovherex(t) andz(t) are the unperturbed solutions. Using the
time, Fourier-series expansion we can perform the integration term
by term and get the result

, (A+B)*—h?
K=—"Za am (2n+1)mAty| (2n+1)¥2\32
K & 2K 4K 32
\?=AB, (4.5 (4.12
andtg is the positive solution of the equation (2n+1) At (2n+1) At
X| sin| T +co T ,
(1
S|n2(520) = k28r12(7\t0|k2) (46) o
4\ [ (2n+1)mAtg)| (2n+1)32A\32
- - Br,= &, Crsin —— 4K
[we have chosen the time origin such thé0)=#/2 and n=0

z(0)=1z,]. Expanding the equations of motion in powers of (4.13

v, we can write the Melnikov functiorfwhich essentially
gives us the change of the unperturbed Hamiltonian over an (2”+1)7TM) _COS((Z”JF 1)77)\'[”

) L X| si
unperturbed perigddue to the effect of particle inertia as sin 2K 2K
M 1= ’)/M 1 W|th
where
M= —(xz—zX), (4.7) qn 12
. Gn=717znv1- (4.14
where the angular brackets denote an averaging over the un- 1+q

perturbed period and and z denote the unperturbed solu- _ o .
tions. Using the Fourier expansions of the elliptic functionsWe note that the Basset force is a periodic force with the

in terms of the nomésee[7]) we obtain same period as the unperturbed motion and in some sense
resonates with it. Close to the separatrix the period of the
. Amng g2 (2n+1) 7\t force (like the period of the motionbecomes infinite. We
X= K(K) Z 1r 2n+1co{ 5K ) also see that since close to the separatrix the nome takes the
n=0 q valueq=1, the Fourier series for the Basset force reduces to
(2n+1)mht terms of the form2,_,(2n+1)¥%cog(2n+1)s] and is for-
05{ T) mally equivalent to some fractional derivative oféafunc-
tion.
" i1 __The Melnikov contribution due to the Basset force is
.Z:_ 4\ q sin (2n+1)77)\t0) MZZ’}/EMZ where
K(k)iZo 1+g°"*1 2K

Mo=(X(1)By (t+7)—2()Bf (t+7). (415

Xsin

(2n+1)71-)\t)

o 4.9

Here the angular brackets denote integration dvever an
unperturbed period. Notice the introduction of a phase factor
7 that comes from the fact that the Basset force is time de-
pendent. However, a more careful examination of the exact
n+l2 |2 form of the Basset force allows us to conclude that the only
g ) relevant value of the phase factor is 0. This is easily seen by
1+qg"*t noting that to lowest order the Basset force is an integral

We can easily perform the integrations to obtain the Melni-
kov function

4m\\2
Ml:( K ) WnZO
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16 ‘ . . . . . ‘ this figure are 2 and 1, respectively. We notice thit al-
ways keeps its sign, which is positive. This means that there
is no possibility for the generation of a limit cycle for the
inertial particle dynamics. Furthermore, interpreting the
Melnikov function as the change of the value of the unper-
turbed Hamiltonian over an unperturbed period we can say
something more about the behavior of particles in the flow:
For a particle that is heavier than the fluig<€0) its “ef-
fective” value of h tends to be reduced in time. Since the
center of the vortex corresponds to higher values afian

the outer part of it =3 at the center of the vortex while
h=1 at the separatrjxwe can say that a heavy particle will
tend to be ejected from the center of the vortex to the sepa-
ratrix region. A more quantitative approach to this process
can be obtained by fittinlyl , andM,(0) to a polynomial in

3 oz o3 o5 . 05 o8 o7 o5 05 1 h and using Eq(4.17) to solve for the evolution dfi in time.

K Furthermore, we find that the value of the Melnikov function
at the separatrix is nonvanishing and of positive sign, so that
the separatrix structure must break under the effects of par-
ticle inertia. The opposite results follow for light particles
(v>0), which tend to concentrate in the center of the vortex.
We notice that the value df1; on the separatrix for these

over the unperturbed trajectory and the integration is perY&lues ofA andB is nonzero. The value d#, on the sepa-
formed over a memory kernel with time ranging frome to ratrix is calculated using the closed form of the separatrix
the present time. Thus, if the unperturbed orbit is taken witreo!ution. Thus a particle can leave the cell under the action
some phase the force will have the same phase and there wAf the inertia force only. Here, there is no contradiction with
be no phase dependence in the Melnikov function. Howevertn€ results of Druzhinin and Ostrovsky. In their paper they
this might not always be the case if the memory term isobserved that a particle will not leave the cell under the
different, that is, if the time integration is between a finite Ction Of the inertia force only. However, the flow they used
past timet, to infinity. Thus we leave the phase dependenceVas & specially symmetric case of th&C flow (A=B) for

in the Melnikov function for completeness. In the remainderVhich the integrand of the Melnikov function identically
of this paper, when referring to the particular form of the Vanishes on t_he separatrix. Th_ls is not generally the case as,
Basset force that ensures that the phase factor is zero, we wifi €xa@mple, in the case considered here. In general, for an
use M,(0). Using the Fourier series for the solutions we ABC flow

obtain the result for the Melnikov function

FIG. 1. Inertial contribution to the Melnikov functiod ; in the
ABC flow with A=2 andB=1 as a function ok?. This Melnikov
function is seen to keep its sign for all valuesIdf and takes a
nonzero value at the separatrix=€1).

Xz— zX~ Asin(X) + Bcog x) — sin(x)cogz)h. (4.18

8rNtL, _{(2n+ 1)\t : . .
M,=— WZ GZ(2n+1)%%sin| — In the special case whew=B this is proportional to the
n=0 value of the Hamiltonian and since fér=B the value of the
(2n+ N7 [(2n+1)mnT Hamiltonian. on the se.parat(ix solgtionhyo, the integrand
X|co xS /|- of the Melnikov function will vanish. However, in general

cases this integrand will not vanish along the separatrix orbit.
(4.16 A more detailed analysis will be needed to reveal the global
phase plane dynamics.

We can interpret the sum of the two Melnikov functions Including the effect of the Basset force, we see that the
as the change of value of the unperturbed Hamiltonian oveMelnikov function due to the Basset force depends on a
an unperturbed period. In fact, using a multiple-time-scalephase and can take positive and negative values depending
perturbation technique on the equations of motisee the on the value of this phase. In the same spirit as before we

Appendix we find that interpret this result as that the effect of the Basset force will
. be “on average” to change the drift of particles towards
h=yM,—eyM,(0), (4.17)  either the center of the vortex or the separatrix. Looking at

the minimum value of the total Melnikov function

where the overdot defines the “slow” time change of theM;+ eM, over all the possible phases, we see that this mini-
unperturbed Hamiltonian and the right-hand side of the equamum is clearly above zero for all values kif for a range of
tion is a function oth. This is in agreement with the rigorous values ofe. This rules out the existence of periodic orbits for
results on the meaning of the Melnikov function quoted atthe inertial particles under the influence of the Basset force
the end of Sec. Il. for small enoughy (Fig. 2). Thus the Basset force will not

Neglecting the Basset force for a moment, we see that thehange the dynamics apart from changing the magnitude of
Melnikov function is a number depending only on the unper-the drift of particles towards the center of the vortex or the
turbed trajectory and of course the valueyofin Fig. 1 we  separatrix. Note that the only case where the minimum of the
give M, as a function ok?. The values ofA andB chosen in  total Melnikov function will be negative is whesis as large
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M,,(®)

01 02 03 04 , 05 06 07 08 09 1 b1 02 03 04,05 06 07 08 09 !

FIG. 2. Minimum over the phase of the total Melnikov function ~ FIG. 3. Value of the total _Melnik(ZJv function at phase 0,
(M=M; + €M,: inertial and Basset force contributipas a func-  Miw(0)=M1+€M;(0), as afunction ofk* for different values of
tion of k? for the ABC flow for different values of the parameter € (@S in Fig. 2.
€ (€=0.01,0.05,0.1,0.2,0.3,0.4,0.5% guantifies the relative impor-
tance of the Basset force with respect to inertial forces. The miniclearly shows the significance of the Basset force as we
mum of the total Melnikov function is seen to be bounded awaymove close to the separatrix region.
from zero for all values ok? for a large range of values ef Summarizing, we see that using the Melnikov functions
M; andM,, we can reproduce the numerical resultq 8f
as 0.5. This Corresponds to |arge Va|ues»yoand for such for a very similar cellular flow, namely, that heaVy partiCleS
values the basic equatid@.1) may not be applicabléFrom 9o towards the separatrix and light particles go towards the
the definition ofe and y we see that their values are not center of the vortex, and that the Basset force can influence
independent.In Fig. 3 we show the total Melnikov function this drift and becomes most important in the separatrix re-
M, + eM,(0), which, as pointed out before, would corre- 9ion. Thus it has to be taken into account for a correct mod-
spond to the change of unperturbed Hamiltonian over a pegling of the particle motion. An interesting point is that in
riod for the special form of the Basset force. general, even without the Basset force, a heavy particle can
Furthermore, we can study the relative importance of thé€ ejected from the vortex and cross the unperturbed separa-

inertia to the Basset force as we move throughout the flovifix. Numerical integration of the system that we have per-
using these Melnikov functions. In Fig(a we plot M,,,  formed seems to support this view. Therefore, it seems that

the square average over the phasd/of the conclusion of3] that separatrix crossing can only occur
as a result of the Basset force is limited to particular cellular
1 (2 flows such as the one they studied.
Y Jy—— M, (7)2d, We now consider the effect of the breakup of the symme-
2 Jo try with respect to translations ip by introducing a small
value of C. We can divide the equations of motion foand

and in Fig. 4b) the ratioM /M. It is seen that the relative z t;); ttf;]ee illﬁtf%?ngf,mﬁt'&ré fltier;] i?whg?nsiegmﬁevzg;bée
importance of the Basset force is very small for small valued ' &

of k? (the center of the vortgxand gradually becomes more order of magnitude a6 we obtain
important as we move towards the separatrix. The curve has

a local minimum somewhere near the separatihose dx _Asin(z) Ccody) N ABcogx)cogz)

value is still much larger than the valuelat 0) and shoots dy h h Y h b

up neark=1. We believe thaM,, (the square average of

M, over the phasgegives us an indication of the transport of . ; ;

phase space area and thus believe that it is a reasonable mea- E: Beodx) | Csin(y) — yABsm(x)sm(z) 3
sure of the effect of the Basset force. For the sake of com-  dY h h h

parison in Fig. 5 we plot the ratio of the maximum over the (4.19

phase oM, to M, and the ratio of the value dfl , when the
phase is 0 toVl; as functions ok?. The first quantity slowly ~whereB; andBj; are thex andz components of the Basset
decreases from the center of the vortex to the separatrix arf@rce parametrized iy instead of time. It is easy to see that
has an abrupt peak &t 1, while the second shows the same the Melnikov contributions due to the inertia and the Basset
behavior as the square average over the phase. force will be of the same form as given earlier, but now
Returning to the comments we made earlier we consideinstead oft we have to introducg/h. There is also a Melni-
M,(0)/M, as the proper measure of the importance of thekov contribution due to the perturbation caused by having
Basset force compared with the inertial force. This measur€+# 0. This isM;=CMj, where
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FIG. 4. (a) M, as a function ok? [the square average over the FIG. 5. (a) Ratio of the maximum of the Basset force contribu-
phase ofM,: M= (1/27)[3"M3(7)d7] and (b) M, /M, as a tion to the Melnikov function max.o2-[M,(7)] to the inertial
function of k2. contributionM 4 and (b) ratio of the Basset force contribution cal-

culated at zero phadd,(0) to the inertial contributiot ; as func-

M= (Xsin(7-+y) — 7cog 7+)). (420 Uonsofk

Here the angular brackets denote averaging over a periogy () — 3277)\2 [ 2hKcoga)—(7\+2mAn)sin(a)
(remember that now the equations have as independent vari- 4h%K2—(27mAn+ m\)?
abley instead oft, and this introduces a minor modification
in the period of the motion Notice also that now a part of
the perturbation depends in a periodic manner on the inde-
pendent variable and this makes it necessary to introduce the

phase factor. The Melnikov functiorM ; can be obtained in a= (2n+ DWMO_ (4.23
closed form as was done [8] and may be written as 2K

X sin

K
)sm( 7),

—K'h
A

2Uo We can now define the total Melnikov function as
SIﬂ( )Slf‘(T) (4.2)  M,=CMs+yM;+eyM,. By studying its zeros as a func-
tion of the phaser, we can study the generation of periodic
orbits under the influence of particle inertia, the effect of
introducing they dependence of the velocity field, and the
effect of the Basset force. It is easily seen that for certain
A—B+h (4.22 values ofy this function might be bounded away from zero,

2A ' thus precluding the existence of periodic orbits of the same

period as the unperturbed one. Such an effect is illustrated in

or as a Fourier series Fig. 6 for valuesA=2 andB=1. In this figure we plot the

M3:2|h|7rsecV6
where

dnz(Uo)—
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—r242r2\ty+ 2\ tp+ 1
(r’=1)®

M, =16\ r, (4.29
wherer =exp(ty) andtg is given by

1
t0=xarccos[1(A/B)1’2] (4.29

_ 2 I{ 77) ) )
M3—A_Bsec %5 (sin(v)—cogq v))sin(1), (4.26

1-m? (1+m) , B _(AB)*?
m a-m™? "TA 7T A-B

(4.27

For the caséA=2 andB=1 we find, neglecting the Basset
contribution,

(b)
25 T T

M, = 0.85Zsin( 7) + y4.919 62. (4.28

We see that this function will never have a zero for any value
of 7 if |y|>0.173C|. Since simple zeros of the total Melni-
kov function calculated on the unperturbed separatrix orbit
imply the existence of chaotic dynamics in the separatrix
region, this result can be interpreted as suppression of chaos
due to particle inertia for relatively small values of the pa-
rametery. However, one must be cautious about this inter-
pretation because the insertion of inertial terms makes the
particle dynamics dissipative. The possible suppression of
o , , , ) , , , , chaos due to particle inertia is in accordance with numerical
01 02z 03 04 05 06 07 08 09 1 results of McLaughlirf9]. One should note the relevance of
this result in mixing problems: The suppression of chaos in
FIG. 6. Locus of the values of the total Melnikov function due the separatrix region because of the effect of finite size of the
to the inertial force and the perturbation yp CM;+yM, as a  advected particles will result in a less efficient mixing of
function ofk? for a fixed value ofC=0.1 and two different values heavy tracers or bubbles than for a passive tracer with the
for y, (@ y=0.05 and(b) y=0.1. It is seen that for large enough same density as the fluid.
values ofy the total Melnikov function can be bounded away from  |n the above results we have not included the effect of the
zero. The locus of the values is given by the region bounded byBasset force. It can easily be seen that the inclusion of the
yM1+Cmin. o2, [M3(7)] and yMy+Cmax. . 0.2, [ M3(7) ]. Basset force will not change these qualitative results signifi-
cantly but will only alter the values of for which the sup-
locus of the values of the Melnikov functiddMs+yM, as  Pression of chaos and the destruction of the periodic orbits
a function ofk2. The paramete€ is kept at the constant OCCUTS. It shon_JId be_ nqted th_at_one can study the_ generation
valueC=0.1 andy takes the value/=0.05 in Fig. §a) and of supharmonlc qrb|t§ in a similar manner by_ taking an ap-
y=0.1 in Fig. 6b), respectively. It is easily seen thatyfis propriate generalization of the Melnikov functioft0].

small enough, there will be values of the phasfor which
the Melnikov function will be equal to 0. This will mean the V. A SECOND EXAMPLE: SPHERICAL PARTICLES
existence of periodic orbits of the same period as the unper- IN THE HILLS VORTEX

turbed one in regions of phase space with the appropriate As a second example, which produces results similar to
values ofk. However, ify gets larger, we see that the Melni- the ABC flow, we consider the motion of small spherical
kov function can never be zero so that no periodic orbits oparticles in the Hill vortex. This is a three-dimensional flow,
the same period as the unperturbed ones will survive underhich in cylindrical coordinates takes the form
the action of the perturbation due to particle inertia.

Finally, it is interesting to consider these Melnikov func- _ _C
, X . X : o U,=rz, Uz,=-7,
tions on the separatrix orbit. The Fourier-series expansion is r
not satisfactory close to the separatrix and so we chose to
perform the integrations using the separatrix solution. Theand is a solution of the Euler equation everywhere apart from
Melnikov functions for general values & andB are thez axis. This flow is clearly singular since it has a singular

CM; +1M,

u,=1-2r2-7? (5.1
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FIG. 7. Inertial force contribution to the Melnikov function for ~ FIG. 8. Inertial force contribution to the Melnikov function for
the Hill vortex as a function ok? for c=0. This Melnikov function ~ the Hill vortex as a function ok” for c=0.1. The Melnikov func-

is seen to keep its sign for all values kfithat is, throughout the tion keeps its sign for values d&f far from the separatrix region
vortex). k=1. A zero of the Melnikov function close to the separatrix is

associated not with the existence of a limit cycle but with the sin-

vorticity distribution and thau, velocity component can be- gularity of the velocity field in this region which makes the validity
come infinite forr —0. The equations of motion for small of the perturbation theory used to derive the equations of motion

spherical particles including only the inertial force is questionabldsee the text for detalls

. —r*+2r+4c® . 2c X[R(Rmax— R (R—Rmin) 1~ YR, (5.4
r=rz=y——3 0=r—2,
whereR =1+ (1+8H)¥2 andR,,=1— (1+8H)Y?. For
z=1-2r2— 7%+ y(—2z+22%). (5.2) more details on the unperturbed motion §&g This integral
can be expressed analytically in closed form to give
We clearly see that the equations foandz can be separated
from the equation for the evolution af. We also see that M;=—2y[A(H)K(k)+B(H)E(k)], (5.5
unlessc=0 the equation for is singular for smalr (near
the z axis). We believe that in this case the above model iswhereK andE are the complete elliptic integrals of first and
not a particularly good approximation for the dynamics ofsecond kind and
heavy particles since the expression of the inertial forces

given here is based on a perturbation argument that will 4k’2Rﬁ’1’§x 6H  4c? 2Hc?
break down if the velocity field becomes singular. However, AH)=-—F— gt gm ~ =
in order to show that the techniques and results given for the max  Tmax  gRS/2 |2
ABC flow extend to other cases we give here the Melnikov
functi_on for this case bea_ring in mind_that it is strictly valid SRE&“JF k'3 0 2
only if c=0 or if the orbits stay sufficiently far from the B(H)= 3 Rmax_EIZ_
regionr=0 . max
It is useful to define the new variabR=r?/2 . The un- 4HG? (2—K?)
perturbed system is Hamiltonian in thR,g) variables and + = ——, (5.6
the Hamiltonian isH=RZ— R+ 2R2. The Melnikov func- SRmax /4
tion for the effect of the particle inertia on the motion is
o 24 wherek?=1—Ryin/Rmax andk =1—k2. Forc=0 we plot
M= _zyj (2R2+ 2c2—3H+ 12RH+ — the Melnikov function as a function & in Fig. 7. We see
—T2 R that this Melnikov function keeps the same sign for all val-
2H?2 ues ofH so that particles lighter than the fluid will tend to
- _) dt, (5.3 concentrate in the core of the vortex and heavy particles will
R be ejected towards the separatrix region. This is similar to

the behavior for thé\B C flow. Forc+ 0 the Melnikov func-
tion can change sign as shown in Fig. 8 o+ 0.1. We can
associate this change of sign with the existence of a limit

whereT is the unperturbed period of the motion in the Hill
vortex. We can rewrite this as an integral owernamely,

2 2 cycle as long as the zero of the Melnikov function is not in

Rmax c°H 2H L L . R
M = _zyf 2R?4+2¢2-3H+12RH+ —5 — —— the vicinity of the separatrix, where the basic model is no
Rmin R R longer valid. (We expect the basic model used here to be
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valid in the whole phase plane excluding a neighborhood ofend to move to the center of the vortex, whereas heavy
the separatrix, the width of which clearly depends on theparticles tend to move away from it.
value ofc.)
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tion of small spherical particles in two distinct incompress-
iplg three—dimensional vgloc_it_y figlds in the weak-inertia APPENDIX
limit. We give a general justification that for a humber of
flows the problem can be reduced to the study of a two- In this appendix we very briefly give the multiple-time-
dimensional Hamiltonian system with a non-Hamiltonianscale technique that leads to the result that the Melnikov
perturbation and a third degree of freedom whose evolutiofiunction is associated with the change of the unperturbed
can be reduced to quadrature. As a result of this some peHamiltonian over a period. We restrict our derivation to the
turbative analytical methods can be used to state result8BC flow, but all the results are applicable to more general
about the bifurcation of limit cycles from the center or the flows. Neglecting the Basset force and taki@g 0, we ob-
behavior of heteroclinic cycles. As an explicit example wetain from the definition ofh as given in Sec. IV and the
take the motion of inertial particles in theBC flow, where  equations of motion given by Eg4.3)
using these technigues we can prove the nonexistence of _
limit cycles for small enough values of the parameteas h= yAB[cog(x)cog z) + sin(x)sir’(z)]. (A1)
well as obtain analytical results on the motion of heavy and
light particles in this flow and the relative importance of theWe now expand the orbits and write=X,+ yx; and
inertia and the Basset force contribution throughout the vorz=2zy+ yz;, substitute into the differential equation, and ex-
tex region. An interesting result is the possible suppressiopand as a power series # Then, to lowest order
of chaos in certain circumstances for bubbles or heavy par- )
ticles advected by the flow. Since chaos is usually related to h=yAB[co$(X,)C0g Zp) + SiN(Xo)Sirt(z5)],  (A2)
effective mixing of a passive tracer advected by a flow field,
this result may be interpreted largely as an inhibition of ef-which can be integrated in time to give the change of the
fective mixing of heavy particles or bubbles for certain pa-Hamiltonian over an unperturbed period. The integral over
rameter values. Such results can be of great interest in apphibe right-hand side of EJA2) then reduces to the Melnikov
cations such as environmental sciences or in experimentéinction. Then introducing a slow time scale= yt we may
fluid mechanics where usually tracers have a density differwrite
ent from that of the fluid.

As a second example we consider the motion of particles ﬂ_
in the Hill vortex. Similar results can be obtained, namely, dt,
that the qualitative behavior of the motion of the tracer can
be given by the study of some properly defined Melnikovwhich reflects the fact thdt changes only on the slow time
integral and that for suitable parameter values no limit cyclescale. Simlarly, we obtain that the Basset force will contrib-
for the motion of the tracer are observed. As before, bubbleste to this change a factor afeM,(0).

My, (A3)
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